預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
2019五年級數學知識點總結!“書山有路勤為徑,學海無涯樂作舟”,要想學好數學,同學們必須下苦功,有好的學習態(tài)度和方法,多加訓練鞏固老師所講的知識點,把知識點融會貫通,掌握熟練,這樣診斷一定能取得好的成績。下面就是小編為大家?guī)淼?/span>2019五年級數學知識點總結,希望可以幫助到大家。
2019五年級數學知識點總結
一、學習目標:
1.探索小數乘法、除法的方法,能正確進行筆算,并能對其中的算理做出合理的解釋;
2.會用“四舍五入”法截取積是小數的近似值;培養(yǎng)從不同角度觀察,分析事物的能力;
3.理解用字母表示數的意義和作用;
4.理解簡易方程的意思及其解法;
5.在理解的基礎上掌握平行四邊形面積的公式,并會運用公式正確地平行四邊形的面積。
二、學習難點:
1.能正確進行乘號的簡寫,略寫;小數乘法的法則;
2.小數乘法中積的小數位數和小數點的定位,乘得的積小數位數不夠的,要在前面用0補足;
3.除數是整數的小數除法的方法;理解商的小數點要與被除數的小數點對齊的道理;
4.構建初步的空間想象力;
5.用字母表示數的意義和作用;
6.多邊形面積的。
三、知識點概念總結:
1.小數乘整數的意義:求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。
2.小數乘法法則:先按照整數乘法的法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用“0”補足。
3.小數除法:小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
4.除數是整數的小數除法法則:先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添“0”,再繼續(xù)除。
5.除數是小數的除法法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補“0”),然后按照除數是整數的除法法則進行。
6.積的近似數:四舍五入是一種準確度的計數保留法,與其他方法本質相同。但特殊之處在于,采用四舍五入,能使被保留部分的與實際值差值不超過較后一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是較小的。
7.數的互化:
(1)小數化成分數
原來有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
(2)分數化成小數
用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
(3)化有限小數
一個較簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5以外的質因數,這個分數就不能化成有限小數。
(4)小數化成百分數
只要把小數點向右移動兩位,同時在后面添上百分號。
(5)百分數化成小數
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
(6)分數化成百分數
通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
(7)百分數化成小數
先把百分數改寫成分數,能約分的要約成較簡分數。
8.小數的分類:
(1)有限小數:小數部分的數位是有限的小數,叫做有限小數。例如:41.7、25.3、0.23都是有限小數。
(2)無限小數:小數部分的數位是無限的小數,叫做無限小數。例如:4.33……3.1415926……
(3)無限不循環(huán)小數:一個數的小數部分,數字排列無規(guī)律且位數無限,這樣的小數叫做無限不循環(huán)小數。
(4)循環(huán)小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環(huán)小數。例如:3.555……0.0333……12.109109……;一個循環(huán)小數的小數部分,依次不斷重復出現的數字叫做這個循環(huán)小數的循環(huán)節(jié)。例如:3.99……的循環(huán)節(jié)是“9”,0.5454……的循環(huán)節(jié)是“54”。
9.循環(huán)節(jié):如果無限小數的小數點后,從某一位起向右進行到某一位止的一節(jié)數字循環(huán)出現,首尾銜接,稱這種小數為循環(huán)小數,這一節(jié)數字稱為循環(huán)節(jié)。把循環(huán)小數寫成個別項與一個無窮等比數列的和的形式后可以化成一個分數。
10.簡易方程:方程ax±b=c(a,b,c是常數)叫做簡易方程。
11.方程:含有未知數的等式叫做方程。(注意方程是等式,又含有未知數,兩者缺一不可)
方程和算術式不同。算術式是一個式子,它由運算符號和已知數組成,它表示未知數。方程是一個等式,在方程里的未知數可以參加運算,并且只有當未知數為特定的數值時,方程才成立。
12.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。如果兩個方程的解相同,那么這兩個方程叫做同解方程。
13.方程的同解原理:
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
14.解方程:解方程,求方程的解的過程叫做解方程。
15.列方程解應用題的意義:用方程式去解答應用題求得應用題的未知量的方法。
16.列方程解答應用題的步驟:
(1)弄清題意,確定未知數并用x表示;
(2)找出題中的數量之間的相等關系;
(3)列方程,解方程;
(4)檢查或驗算,寫出答案。
17.列方程解應用題的方法:
(1)綜合法
先把應用題中已知數(量)和所設未知數(量)列成有關的代數式,再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種思維過程,其思考方向是從已知到未知。
(2)分析法
先找出等量關系,再根據具體建立等量關系的需要,把應用題中已知數(量)和所設的未知數(量)列成有關的代數式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。
18.列方程解應用題的范圍:
小學范圍內常用方程解的應用題:
(1)一般應用題;
(2)和倍、差倍問題;
(3)幾何形體的周長、面積、體積;
(4)分數、百分數應用題;
(5)比和比例應用題。
19.平行四邊形的面積公式:
底×高(推導方法如圖);如用“h”表示高,“a”表示底,“S”表示平行四邊形面積,則S平行四邊形=ah
20.三角形面積公式:
S△=1/2*ah(a是三角形的底,h是底所對應的高)
21.梯形面積公式:
(1)梯形的面積公式:(上底+下底)×高÷2.
用字母表示:(a+b)×h÷2
(2)另一公式:中位線×高
用字母表示:l·h
(3)對角線互相垂直的梯形:對角線×對角線÷2.
小編推薦:
以上就是小編特意為大家整理的2019五年級數學知識點總結,希望對有需要的同學提供幫助,大家如果在學習中有什么疑問,歡迎撥打愛智康免費電話:!那里有專業(yè)的老師為大家解答。