<thead id="5fdug"><dfn id="5fdug"><em id="5fdug"></em></dfn></thead>
    <nobr id="5fdug"><span id="5fdug"></span></nobr><em id="5fdug"><sup id="5fdug"><meter id="5fdug"></meter></sup></em>

    資訊

    上海

    課程咨詢: 400-810-2680

    預(yù)約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓

    獲取驗證碼

    請選擇城市

    • 上海

    請選擇意向校區(qū)

    請選擇年級

    請選擇科目

    立即體驗
    當前位置:北京學而思1對1 > 高中教育 > 高中資訊 > 正文
    內(nèi)容頁banner-1對1體驗

    高一人教版數(shù)學必修四知識點總結(jié),北京考生看過來

    2020-03-15 14:17:01  來源:網(wǎng)絡(luò)整理

        點擊領(lǐng)取→高中人教版全套電子教材+全科知識點匯總

     

    高一人教版數(shù)學必修四知識點總結(jié),北京考生看過來!數(shù)學的公式比較多,大家在學習數(shù)學的時候?qū)τ诨A(chǔ)性的公式一定要牢記,運用起來才會得心應(yīng)手。老師上課講的知識非常重要,上課聽懂老師所講的內(nèi)容,能大大提高同學們學習的效率哦!以下是關(guān)于數(shù)學必修四的知識點,一起來看看吧!

      公式分類

      同角三角函數(shù)的基本關(guān)系

      tan α=sin α/cos α

      平常針對不同條件的常用的兩個公式

      sin^2 α+cos^2 α=1 tan α *tan α 的鄰角=1

      銳角三角函數(shù)公式

      正弦: sin α=∠α的對邊/∠α 的斜邊 余弦:cos α=∠α的鄰邊/∠α的斜邊 正切:tan α=∠α的對邊/∠α的鄰邊 余切:cot α=∠α的鄰邊/∠α的對邊

      二倍角公式

      sin2A=2sinA•cosA cos2A=cos^2 A-sin^2 A=1-2sin^2 A=2cos^2 A-1 tan2A=(2tanA)/(1-tan^2 A)

      三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推導 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos^2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)^2-sin^2a] =4sina(sin^260°-sin^2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cos^2a-cos^230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述兩式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

      半角公式

      tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

      和差化積

      sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

      sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

      和差化積

      cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ -cosαsinβ

      積化和差

      sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2

      雙曲函數(shù)

      sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α與 -α的三角函數(shù)值之間的關(guān)系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根號,包括{……}中的內(nèi)容

      誘導公式

      sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 誘導公式記背訣竅:奇變偶不變,符號看象限

      通用公式

      sinα=2tan(α/2)/[1+tan²(α/2)] cosα=[1-tan²(α/2)]/[1+tan²(α/2)] tanα=2tan(α/2)/[1-tan²(α/2)]

      其它公式

      (1) (sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可 (4)對于任意非直角三角形,總有 tanA+tanB+tanC=tanAtanBtanC 證: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得證 同樣可以得證,當x+y+z=nπ(n∈Z)時,該關(guān)系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 其他非重點三角函數(shù) csc(a) = 1/sin(a) sec(a) = 1/cos(a)

     

      另外學而思愛智康的老師還為大家精心準備了:

      高中人教版全套電子教材+全科知識點匯總

    點擊鏈接?https://jinshuju.net/f/p4vjuF或下方圖片即可領(lǐng)取!

         

     

    同時,也向您推薦高中學業(yè)規(guī)劃課程、高考志愿填報課程

    點擊鏈接?https://jinshuju.net/f/HXIXwC或下方圖片即可預(yù)約!

     

    以上就是小編特意為大家整理的高一人教版數(shù)學必修四知識點總結(jié),北京考生看過來的相關(guān)內(nèi)容,同學們在學習的過程中如有疑問或者想要獲取更多資料,歡迎撥打?qū)W而思愛智康免費電話: 更有專業(yè)的老師為大家解答相關(guān)問題!

     

    小編推薦:

      【北京考生必看】高一人教版必修一物理知識點

      【北京考生必學】高一人教版化學知識點

    文章來源于網(wǎng)絡(luò)整理,如有侵權(quán),請聯(lián)系刪除,郵箱fanpeipei@100tal.com

    文章下長方圖-高三一輪復習史地政資料
    你可能感興趣的文章
    立即領(lǐng)取中小學熱門學習資料
    *我們在24小時內(nèi)與您取得電話聯(lián)系
    側(cè)邊圖-寒假1對1