資訊

上海

課程咨詢: 400-810-2680

預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當前位置:北京學而思1對1 > 高中教育 > 高中數學 > 正文
內容頁banner-1對1體驗

高三人教版文科數學知識點!北京考生別錯過!

2020-03-15 18:43:44  來源:網絡整理

    點擊領取→高中人教版全套電子教材+全科知識點匯總

高三人教版文科數學知識點! 北京考生別錯過!很多的文科考生都覺得數學太難學了,大家都是喜歡文科才選擇文科高考,但數學是純理科的思維,做題也做不明白,這可怎么辦? 那么數學作為一門可能會考科目,必須還是要掌握一定的學習方法,要對知識點及時總結復習,同學要相信,只要不放棄,再難的學科也會變得漸漸容易起來,因此同學們一定不要灰心,要加油哦~~下面一起來看看高三人教版文科數學知識點!

  與高一高二不同之處在于,此時復習力學部分知識是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的孩子,此時需要進行查漏補缺,但也需要同時能力,填補知識、技能的空白。無憂考網高三頻道為你精心準備了《人教版高三物理知識點整理》助你金榜題名!

  【篇一】

  一、函數的定義域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被開方數大于等于零;

  3、對數的真數大于零;

  4、指數函數和對數函數的底數大于零且不等于1;

  5、三角函數正切函數y=tanx中x≠kπ+π/2;

  6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。

  二、函數的解析式的常用求法:

  1、定義法;

  2、換元法;

  3、待定系數法;

  4、函數方程法;

  5、參數法;

  6、配方法

  三、函數的值域的常用求法:

  1、換元法;

  2、配方法;

  3、判別式法;

  4、幾何法;

  5、不等式法;

  6、單調性法;

  7、直接法

  四、函數的較值的常用求法:

  1、配方法;

  2、換元法;

  3、不等式法;

  4、幾何法;

  5、單調性法

  五、函數單調性的常用結論:

  1、若f(x),g(x)均為某區(qū)間上的增(減)函數,則f(x)+g(x)在這個區(qū)間上也為增(減)函數。

  2、若f(x)為增(減)函數,則-f(x)為減(增)函數。

  3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

  4、奇函數在對稱區(qū)間上的單調性相同,偶函數在對稱區(qū)間上的單調性相反。

  5、常用函數的單調性解答:比較大小、求值域、求較值、解不等式、證不等式、作函數圖象。

  六、函數奇偶性的常用結論:

  1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

  2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

  3、一個奇函數與一個偶函數的積(商)為奇函數。

  4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。

  5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。

  【篇二】  

  1、摩擦力定義:當一個物體在另一個物體的表面上相對運動(或有相對運動的趨勢)時,受到的阻礙相對運動(或阻礙相對運動趨勢)的力,叫摩擦力,可分為靜摩擦力和滑動摩擦力。

  2、摩擦力產生條件:①接觸面粗糙;②相互接觸的物體間有彈力;③接觸面間有相對運動(或相對運動趨勢)。

  說明:三個條件缺一不可,特別要注意“相對”的理解。

       一個推導

  利用錯位相減法推導等比數列的前n項和:Sn=a1+a1q+a1q2+…+a1qn-1,

  同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

  兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

  兩個防范

  (1)由an+1=qan,q≠0并不能立即斷言{an}為等比數列,還要驗證a1≠0.

  (2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

  三種方法

  等比數列的判斷方法有:

  (1)定義法:若an+1/an=q(q為非零常數)或an/an-1=q(q為非零常數且n≥2且n∈N*),則{an}是等比數列.

  (2)中項公式法:在數列{an}中,an≠0且a=an·an+2(n∈N*),則數列{an}是等比數列.

  (3)通項公式法:若數列通項公式可寫成an=c·qn(c,q均是不為0的常數,n∈N*),則{an}是等比數列.

  注:前兩種方法也可用來證明一個數列為等比數列.

       【篇二】

  立體幾何初步

  (1)棱柱:

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類:以底面多邊形的邊數作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

  向量的向量積

  定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。

  向量的向量積性質:

  ∣a×b∣是以a和b為邊的平行四邊形面積。

  a×a=0。

  a‖b〈=〉a×b=0。

  向量的向量積運算律

  a×b=-b×a;

  (λa)×b=λ(a×b)=a×(λb);

  (a+b)×c=a×c+b×c.

  注:向量沒有除法,“向量AB/向量CD”是沒有意義的。

 

 

  另外學而思愛智康的老師還為大家精心準備了:

  高中人教版全套電子教材+全科知識點匯總

點擊鏈接?https://jinshuju.net/f/p4vjuF或下方圖片即可領取!

 

同時,也向您推薦高中學業(yè)規(guī)劃課程、高考志愿填報課程

點擊鏈接?https://jinshuju.net/f/HXIXwC或下方圖片即可預約!

 

以上就是小編特意為大家整理的高三人教版文科數學知識點!北京考生別錯過!的相關內容,同學們在學習的過程中如有疑問或者想要獲取更多資料,歡迎撥打學而思愛智康免費電話: 更有專業(yè)的老師為大家解答相關問題!

 

小編推薦:

  北京疫情期間的高三孩子如何準備?

2020北京西城區(qū)高三一模各科試題及答案解析匯總

文章來源于網絡整理,如有侵權,請聯系刪除,郵箱fanpeipei@100tal.com

文章下長方圖-高三一輪復習史地政資料
立即領取中小學熱門學習資料
*我們在24小時內與您取得電話聯系
側邊圖-寒假1對1