預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
北京高中數學導數知識點!同學們是高中數學的一個難點,對于學習導數同學們是不是都有自己的學習方法呢,無論什么方法只要能夠把導數的知識點掌握好就可以了。下面,小編為大家?guī)?/span>北京高中數學導數知識點。
(一)導數第一定義
設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時,相應地函數取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,并稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即導數第一定義
(二)導數第二定義
設函數 y = f(x) 在點 x0 的某個領域內有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時,相應地函數變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數 y = f(x) 在點 x0 處可導,并稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即 導數第二定義
(三)導函數與導數
如果函數 y = f(x) 在開區(qū)間 I 內每一點都可導,就稱函數f(x)在區(qū)間 I 內可導。這時函數 y = f(x) 對于區(qū)間 I 內的每一個確定的 x 值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數 y = f(x) 的導函數,記作 y', f'(x), dy/dx, df(x)/dx。導函數簡稱導數。
(四)單調性及其應用
1.利用導數研究多項式函數單調性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
2.用導數求多項式函數單調區(qū)間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的.交集的對應區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間
學習了導數基礎知識點,接下來可以學習高二數學中涉及到的導數應用的部分。
以上是部分資料截圖,點擊下方鏈接領取完整版
代入法
代入法往往適合給定了一些條件的題型,比如說是未知數ab,它會分別給出a、b一個特定的條件,然后讓你求ab組合在一起的式子,這么看可能會很復雜。但是如果是選擇題,你可以把選項中的答案代入到式子中來計算,就會簡單很多!
區(qū)間法
區(qū)間法也可以稱之為排除法,靠著大概計算出來的數據或是猜測的一些數據來選擇。比如說一個選擇題題目里給了好幾個角度,很明顯,答案一定和這幾個角度有關系。
坐標法
如果做一些圖形題時可能會完全找不到思路,第一可以用比例法,第二就可以用坐標法,不管是哪類的三角函數,其實只要找到兩點坐標,就可以直接代入函數求垂直、求長度、求相切相離公式,直接就可以求出答案,不用一點點的找角度了。
比例法
其實比例法很簡單也很無賴,遇到圖形題,首先把已知條件標上去,未知的可以用量角器量出來,之后就可以用尺子來量出兩條實線的比例關系,然后通過已知的一邊,用比例去估算求的那一邊就可以了。不要懷疑,就是這么神奇!
函數法
函數法就是要把一些計算轉換成函數,然后代入答案,移項,把方程的一邊變?yōu)?,然后把函數表達式畫出來,看與零點有沒有唯一的焦點,這樣就可以根據函數的圖像判斷答案了!
以上就是小編特意為大家整理的北京高中數學導數知識點的相關內容,同學們在學習的過程中如有疑問或者想要獲取更多資料,請撥打學而思愛智康免費咨詢電話:400-810-2680!
部分資料截圖如下:
點擊鏈接領取完整版資料:https://jinshuju.net/f/fzH4Lv
相關推薦:
文章來源于網絡整理,如有侵權,請聯系刪除,郵箱fanpeipei@100tal.com